

Genetic Diversity in 5 North American Dairy Breeds

Emmanuel A. Lozada-Soto

Managing Genetic Diversity in Dairy Cattle Workshop 14th of July 2022 Cremona, Italy

Consequences of Genomic Selection on Genetic Diversity

- Genomic selection has become the standard approach in US dairy cattle breeding.
- Increased rates of genetic gain through improved accuracy of prediction and reduced generation intervals.
- Faster accumulation of homozygosity under genomic selection.

Are there methods that can be utilized to monitor the accumulation of inbreeding?

Topics

- 1. Genome-wide and region-specific autozygosity.
- 2. Pedigree vs genomic inbreeding.
- 3. Understanding historical and recent changes in genetic diversity.

Genomic Dairy Breeds in the US

Ayrshire

Holstein

Brown Swiss

Jersey

Guernsey

Animals

Breed	Acronym	Pedigree	Genotyped
Holstein	HO	6,725,679	3,649,734
Jersey	JE	985,959	459,784
Brown Swiss	BS	208,219	49,360
Ayrshire	AY	33,975	9,442
Guernsey	GU	45,792	5,359

Number of animals by year of birth

Detection of ROH

• Runs of homozygosity were detected using PLINK 1.9

• Parameters used to detect ROH were:

- 1. Window size = 20 SNPs
- 2. At most one heterozygote call in a window
- 3. At most two missing calls in a window
- 4. Minimum physical length of an ROH of 2 Mb
- 5. A maximum gap of 500 Kb between consecutive SNPs
- 6. A minimum SNP density of at least 1 SNP per 100kb
- 7. A minimum number of 60 SNPs to declare an ROH

Parameter	AY	BS	GU	НО	JE
Number of ROH		-	-	-	-
Mean	37.24	47.69	54.40	40.39	62.66
Standard Deviation	8.27	8.59	7.48	8.49	8.29
Minimum	4	6	20	1	24
Maximum	68	91	81	94	105
Average ROH length (Mb)					
Mean	7.04	7.54	6.74	7.46	6.80
Standard Deviation	1.40	1.10	1.07	1.19	0.94
Minimum	3.01	3.02	4.20	2.56	3.76
Maximum	17.95	16.57	16.92	22.91	18.48

a)

Breed 🗖 Ayrshire 🔲 Brown Swiss 🗖 Guernsey 🥅 Holstein 🗖 Jersey

Region-specific autozygosity

• Within breed, a coefficient of autozygosity for every marker (F_L) was calculated as the proportion of animals in which the marker was located inside an ROH.

• We identified significant SNP as those with F_L at or above the 99.5th percentile for all genome-wide markers.

• Adjacent significant SNP were joined into larger segments known as ROH islands. ROH islands represent regions of reduced local variability that serve as genomic signatures of past selective history.

Notable genes:

- ADAMTS3ANKRD17
 - GC NPFFR2

Notable genes: • ISL1 • PELO

Chromosome

QTL annotation and trait enrichment

- We utilized the GALLO R package to query the Animal QTLdb for quantitative trait loci (QTL) that have been previously identified in the regions of interest.
- Trait enrichment analysis was performed on the annotated QTL by chromosome.
- Significantly enriched traits had an FDR adjusted P-value lower than 0.05.

QTL Ratio (Observed/Annotated)

0.25

0.50

QTL Ratio (Observed/Annotated)

0.75

1.00

Milking speed (BTA7)

Milk potassium content (BTA6) +

NC STATE UNIVERSITY

Inbreeding

- We calculated pedigree and genomic inbreeding coefficients.
 - Pedigree Inbreeding (F_{PED})
 - Genomic Inbreeding
 - Using genomic relationship matrix (F_{GRM})
 - Using proportion of genome in ROH (F_{ROH})

Breed	F _{PED}	F _{GRM}	F _{ROH}
AY	0.06 ± 0.02	0.24 ± 0.03	0.11 ± 0.03
BS	0.06 ± 0.03	0.27 ± 0.03	0.15 ± 0.04
GU	0.07 ± 0.02	0.29 ± 0.03	0.15 ± 0.03
НО	0.08 ± 0.03	0.22 ± 0.03	0.12 ± 0.04
JE	0.08 ± 0.02	0.29 ± 0.03	0.17 ± 0.03

Pearson Correlations

Past effective population size (N_e)

- Effective population size 5 to 100 generations ago was estimated using the GONE software.
- The program was run with default parameters.

Breed — Ayrshire — Brown Swiss — Guernsey — Holstein — Jersey

What role is genomic selection playing in the current levels of genetic diversity?

Yearly rates of inbreeding (ΔF_{yr})

- ΔF_{yr} was calculated for each inbreeding measure ($\Delta F_{PED_{yr}}, \Delta F_{GRM_{yr}}, \Delta F_{ROH_{yr}}$) in sires and dams of each breed for three periods of interest:
- 1. Before the advent of GS (P1 = 2000 to 2009)
- 2. During the initial implementation of GS (P2 = 2010 to 2014)
- 3. After the widespread adoption of GS (P3 = 2015 to 2018)

Effective population size in the three periods

• We used the estimates of the yearly rate of inbreeding coupled with the generation intervals calculated at each period to estimate each population's effective population size in the three recent time periods (P1, P2, and P3)

$$N_e = \frac{1}{2L\Delta F_{vr}}$$

ΔF_{yr} in sires

Measure	Period	AY	BS	GU	НО	JE
ΔF _{PED} (CI) (%)	P1	-0.12 (-0.25, 0.01)	0.08 (0.00, 0.16)	0.23 (0.09, 0.36)	0.03 (0.01, 0.04)	-0.18 (-0.24, - 0.13)
	P2	0.15 (-0.15, 0.44)	0.05 (-0.13, 0.22)	-0.01 (-0.32, 0.30)	0.66 (0.63, 0.69)	0.31 (0.22, 0.40)
	Р3	0.19 (-0.45, 0.83)	0.65 (0.26, 1.03)	0.52 (-0.03, 1.07)	1.09 (1.02, 1.16)	0.29 (0.10, 0.48)

	P1	0.14 (-0.09, 0.36)	0.05 (-0.07, 0.16)	0.21 (-0.02, 0.44)	0.07 (0.05, 0.09)	-0.19 (-0.27, - 0.10)
$\Delta F_{\text{GRM}}(\text{CI})$ (%)	P2	0.03 (-0.43, 0.48)	0.36 (0.09, 0.64)	-0.14 (-0.59, 0.30)	1.01 (0.96, 1.06)	0.34 (0.19, 0.50)
	Р3	0.52 (-0.64, 1.68)	1.03 (0.44, 1.63)	0.76 (-0.07, 1.59)	1.50 (1.40, 1.60)	0.28 (-0.01, 0.57)

	P1	0.15 (-0.06, 0.36)	0.02 (-0.09, 0.14)	0.24 (0.03, 0.45)	0.08 (0.06, 0.10)	-0.18 (-0.27, - 0.10)
$\Delta F_{ROH}(CI)$ (%)	P2	0.08 (-0.37, 0.52)	0.26 (-0.04, 0.56)	-0.30 (-0.75, 0.15)	0.97 (0.92, 1.01)	0.42 (0.27, 0.57)
	Р3	0.52 (-0.59, 1.64)	1.00 (0.41, 1.59)	0.60 (-0.23, 1.42)	1.41 (1.31, 1.51)	0.33 (0.05, 0.61)

ΔF_{yr} in sires

Measure	Period	AY	GU
	P1	-0.12 (-0.25, 0.01)	0.23 (0.09, 0.36)
ΔF_{PED} (CI) (%)	P2	0.15 (-0.15, 0.44)	-0.01 (-0.32, 0.30)
	Р3	0.19 (-0.45, 0.83)	0.52 (-0.03, 1.07)
		MAR CA.	
	P1	0.14 (-0.09, 0.36)	0.21 (-0.02, 0.44)
ΔF_{GRM} (CI) (%)	P2	0.03 (-0.43, 0.48)	-0.14 (-0.59, 0.30)
	P3	0.52 (-0.64, 1.68)	0.76 (-0.07, 1.59)
MALAN INTERNAL IN	1 marsh	19	
ΔF _{ROH} (CI) (%)	P1	0.15 (-0.06, 0.36)	0.24 (0.03, 0.45)
	P2	0.08 (-0.37, 0.52)	-0.30 (-0.75, 0.15)
	P3	0.52 (-0.59, 1.64)	0.60 (-0.23, 1.42)

ΔF_{yr} in sires

Measure	Period	BS	НО	JE
	P1	0.08 (0.00, 0.16)	0.03 (0.01, 0.04)	-0.18 (-0.24, -0.13)
ΔF_{PED} (CI) (%)	P2	0.05 (-0.13, 0.22)	0.66 (0.63, 0.69)	0.31 (0.22, 0.40)
	Р3	0.65 (0.26, 1.03)	1.09 (1.02, 1.16)	0.29 (0.10, 0.48)
	1			
	P1	0.05 (-0.07, 0.16)	0.07 (0.05, 0.09)	-0.19 (-0.27, -0.10)
ΔF_{GRM} (CI) (%)	P2	0.36 (0.09, 0.64)	1.01 (0.96, 1.06)	0.34 (0.19, 0.50)
	Р3	1.03 (0.44, 1.63)	1.50 (1.40, 1.60)	0.28 (-0.01, 0.57)
	Real Provide	1 1 2		
	P1	0.02 (-0.09, 0.14)	0.08 (0.06, 0.10)	-0.18 (-0.27, -0.10)
ΔF_{ROH} (CI) (%)	P2	0.26 (-0.04, 0.56)	0.97 (0.92, 1.01)	0.42 (0.27, 0.57)
	Р3	1.00 (0.41, 1.59)	1.41 (1.31, 1.51)	0.33 (0.05, 0.61)

ΔF_{yr} in dams

Measure	Period	AY	BS	GU	НО	JE
	P1	-0.17 (-0.28, - 0.06)	0.26 (0.15, 0.37)	0.02 (-0.15, 0.19)	0.11 (0.10, 0.12)	-0.01 (-0.06, - 0.03)
ΔF_{PED} (CI) (%)	P2	0.25 (0.14, 0.36)	0.01 (-0.08, 0.09)	0.09 (-0.04, 0.22)	0.27 (0.26, 0.27)	0.10 (0.08, 0.12)
	P3	0.08 (-0.11, 0.26)	0.18 (0.06, 0.30)	-0.07 (-0.26, 0.11)	0.55 (0.54, 0.56)	0.15 (0.13, 0.17)
					N JOHN	
ΔF _{GRM} (CI) (%)	P1	-0.19 (-0.34, - 0.04)	0.23 (0.08, 0.38)	0.18 (-0.04, 0.40)	0.17 (0.16, 0.19)	-0.11 (-0.17, - 0.05)
	P2	0.28 (0.16, 0.41)	0.06 (-0.07, 0.18)	0.11 (-0.10, 0.32)	0.27 (0.26, 0.27)	0.06 (0.03, 0.09)
	Р3	0.11 (-0.13, 0.35)	0.37 (0.20, 0.54)	-0.11 (-0.40, 0.18)	0.70 (0.69, 0.70)	0.05 (0.03, 0.08)
		1.52.54				
	P1	-0.13 (-0.26, 0.01)	0.28 (0.13, 0.43)	0.17 (-0.04, 0.38)	0.21 (0.20, 0.23)	-0.05 (-0.11, 0.01)
$\Delta F_{ROH}(CI)$ (%)	P2	0.26 (0.15, 0.38)	0.07 (-0.05, 0.19)	0.07 (-0.13, 0.28)	0.26 (0.25, 0.27)	0.11 (0.09, 0.14)
	P3	0.15 (-0.07, 0.38)	0.35 (0.19, 0.51)	-0.06 (-0.34, 0.22)	0.66 (0.66, 0.67)	0.07 (0.05, 0.10)

N_e in sires

Measure	Period	НО	JE	BS
	P1	344 (172, 518)	NA	93 (3, 184)
N _{ePED} (CI)	P2	20 (19, 21)	36 (25, 46)	NA
	Р3	18 (17, 19)	51 (18, 84)	18 (8, 29)
			2000	
	P1	124 (88, 161)	NA	NA
N _{eGRM} (CI)	P2	13 (13, 14)	32 (18, 47)	24 (6, 42)
	Р3	13 (12, 14)	NA	12 (5, 18)
	A A A A			
	P1	113 (82, 144)	NA	NA
N _{eROH} (CI)	Р2	14 (13, 14)	26 (17, 36)	NA
	Р3	14 (13, 15)	46 (7, 85)	12 (5, 19)

N_e in dams

Measure	Period	НО	JE	BS
	P1	82 (75, 89)	NA	32 (18, 45)
N _{ePED} (CI)	P2	42 (41, 43)	113 (92, 134)	NA
	Р3	25 (25, 26)	99 (87, 110)	64 (20, 107)
	5			
	P1	55 (50, 59)	NA	36 (13, 59)
N _{eGRM} (CI)	P2	42 (41, 44)	195 (103, 286)	NA
	Р3	20 (20, 20)	276 (148, 403)	31 (17, 44)
	P1	44 (41, 47)	NA	30 (13, 46)
N _{eROH} (CI)	P2	44 (42, 45)	104 (78, 129)	NA
	Р3	21 (21, 21)	199 (135, 263)	32 (17, 48)

Take-home Message

• Differences across breeds in terms of:

- Pedigree and genomic inbreeding levels
- Rates of inbreeding accumulation
- Past and present effective population sizes

• The adoption of genomic selection has brought with it increased levels of inbreeding and has decreased the genetic diversity within breeds.

Implications

- More detailed analysis must be conducted to census the genetic diversity available for selection in US dairy breeds.
- Strategies to curb the accumulation of inbreeding in these populations need to be continuously investigated and implemented.

Thank you for your attention!

Questions?