

LIVESTOCK INBREEDING IN THE GENOMIC ERA

ANAFIBJ WORKSHOP - Managing genetic diversity in dairy

C. Maltecca*, F. Tiezzi, *cmaltec@ncsu.edu

Cremona, Italy – July 14, 2022

Inbreeding and Genomic Information

Landscape Change

Genomics to predict breeding values is now standard in animal breeding

- Adopted in pretty much all species
- Mature and effective machinery for the prediction of GEBV

In dairy > 6 million individuals have genotype information.

Their genotypes not fully integrated or exploited

Opportunity to incorporate population/herd management at the genomic level.

- ► Purebred:
 - Management of Lethal and Sub-Lethal Mutations.
 - ► Functional Inbreeding Depression.
 - Genetic Diversity.
 - Breed/Population divergence.
 - Optimal Matching of Genomes.

The accumulation of inbreeding is unavoidable:

- ► Intense directional selection
- High variance of reproductive success
- Use of BLUP and truncation selection

Inbreeding "can" reduce the mean value of a trait

- The rate of inbreeding per year increases due to shortening of generation interval
- The rate of inbreeding per generation decreases because MS is better assessed
- The rate of inbreeding per generation decreases because a larger pool of genotypes can potentially be sampled

All of these are true but the **"net"** effect is a faster accumulation of homozygosity in the population

How genomic selection influences inbreeding

N

What does Inbreeding Measures

And why do we care

Inbreeding

 $\mu F = a(p-q) + 2d(1-F)pq$ The reduction in the population mean due to inbreeding -2pqFd: https://www.overleaf.com/project/5d09064c0cb8bb7af1c4c8e8

Inbreeding Depression

Model	Parent genotypes	F, hybrid genotypes and their fitness (or quality) relative to the parent genotypes	
Recessive deleterious mutations Dominance hypothesis Single locus Multiple loci (effects of different mutant alleles marked in hybrids)	$\frac{A/A}{A/A} \times \frac{a/a}{B/B} \longrightarrow$	A/a A/a B/b	Intermediate fitness but above the parential average (homozygote shows inbreeding depression) High fitness (heterosis and inbreeding depression)
Recessive deleterious mutations at closely linked loci Pseudo-overdominance	$\begin{array}{c} a & b \\ \hline a & b \end{array}$	A B 0 B	Higher fitness than the parent genotypes
Single loci with heterozygous advantage True overdominance	$\begin{array}{c} A_1 \neq A_1 \\ \times \\ A_2 \neq A_2 \end{array} \longrightarrow$	A_1/A_2	High fitness (heterosis and inbreeding depression in homozygote)

Nature Reviews | Genetics 2

²from Charlesworth Hill 2009

The total genetic variance in the populaton following inbreeding is (Weir and Cockerham, 1977)

$$V_{GF} = (1 + F)V_A + (1 - F)V_D + 4FC_{AD} + FV_H - F^2D_H$$

where V_A and V_D are the additive genetic and dominance variances in the base population (F = 0).

$$C_{AD} = \sum_{i} P_{i} \alpha_{i} \delta_{ii}, V_{H} = \sum_{i} P_{i} \delta_{ii}^{2}, D_{H} = (\sum_{i} P_{i} \delta_{ii})^{2}$$

When dominance variance is zero,

$$V_{A_F} = (1+F) V_A$$

Under correct conditions inbreeding may have advantages for selection because the variance of breeding values is increased.

OK then. How Much Dominance is there then?

Harsan Niloo 🗟 🔍 Jennis E. Pryce, Oacar Ganzález-Recie, Senjanin G. Cocks and Ben J. Hayes Generics: Selector Desixtion 2016 486

OK then. How Much Dominance is there then?

N

$$V_{GF} = (1+F)V_A + (1-F)V_D$$

- How can two individuals with similar breeding value be further discriminated on the basis of genomic diversity and fitness
- How should we do breeding balancing short and long term gains as well as fitness and overall variability?

Primary Question

Removing Recessive Load

Determining Inbreeding Depression Based on Dominance Estimates

Finding Dominance is not easy:

- The proportion of the genetic variance at a causal variant that is captured by markers is ρ² (correlation between SNP and causal variant) for additive variance and ρ⁴ for dominance variance ⁴
- Independence between additive and dominance effects does not hold in reality ⁵
- Given the directionality of dominance, the a priori dominance effect of a gene should be positive so we account for it with inbreeding ⁶

⁴Zhu et al 2015 ⁵Huang and Mackay 2016 ⁶Xiang et al. 2016

Removing Recessive Load

Is Inbreeding still a useful Measure?

Yes it is

How do we measure inbreeding

Pedigree Based Inbreeding

- Expected probability of IBD
- Underestimate true inbreeding coefficient

Genomic Based Inbreeding

- Realized proportion of genome IBS
- Approximate IBD probability

ROH Based Inbreeding

- Estimate local (recent) autozygosity
- Approximate IBD probability

HBD Based Inbreeding

- Estimate local autozygosity
- Models IBD probability

Pedigree vs. Genomic Inbreeding

Pedigree and Genomic Relatedness

Visualizing Genomic Relationships

Relationships

Not all Inbreeding is Created Equal

Trait	-10logp Pedigree	-10logp Genomic
Milk	4.95	18.06
Fat	4.67	9.96
Pro	2.18	13.47
PL	0.33	1.5
DPR	0.57	0.08
SCS	0.11	0.14

Characterizing Local Inbreeding

ROH Definition and advantages

...

24

Time

Identifying and managing inbreeding at the global and local level with the use of genomic information

ROH and related

ORIGINAL ARTICLE

Geno-Diver: A combined coalescence and forward-in-time simulator for populations undergoing selection for comple traits

.

A heuristic method to identify runs of homozygosity associated with reduced performance in livestock

J. T. Howard 📼, F. Tiezzi, Y. Huang, K. A. Gray, C. Maltecca

Journal of Animal Science, Volume 95, Issue 10, October 2017, Pages 4318–4332, https://doi.org/10.2527/jas2017.1664 Published: 01 October 2017 Article history \checkmark

GenoDiver

A Coalescent Forward in Time Simulation Toolkit

Home About Parameters Output Files Examples

R²⁹

There are many theoretically satisfying ideas...

- ...but nobody uses them
- Geneticists don't breed cows, farmers do
- Many cows now mated at random to a portfolio of bulls
- Everyone thinks their neighbor should use different bulls

Some methods for avoiding inbreeding Optimal contribution theory Minimization of progeny inbreeding Linear programming Look-ahead mate selection Selection against lethal alleles Index selection including Mendelian sampling variance Genomic selection including dominance

Mating Design

Genetics	Selection Evolution
Home About Articles	Submission Guidelines
Abstract	Research Article Open Access
Background	A simple strategy for managing many recessive
Methods	disorders in a dairy cattle breeding program
Results and discussion	disorders in a dairy cactle breeding program
Conclusions	John B. Cole 🕮

Haplotype	Functional/Gene name	Chromosome	Location (Mbp)	Haplotype frequency (%)	Timing ¹
HBR	Black/red coat color/MC1R (MSHR)	18	14.71	0.75	_
HCD	Cholesterol deficiency/APOB	11	77.87	2.28	w
HDR	Dominant red color/MC1R (MSHR)	3	9.36	0.03	_
нно	Brachyspina/FANCI	21	20.77	1.65	E,B
HH1	APAF1	5	62.81	1.28	E
HH2	-	1	93.50-95.58	1.21	E
HH3	SMC2	8	93.75	2.64	E
HH4	GART	1	1.99	0.23	E
HH5	TFB1M	9	91.85-91.94	2.39	E
HH6	SDE2	16	29.01-29.05	0.44	Old age
HHB	BLAD/ITGB2	1	144.77	0.21	w
HHC	CVM/SLC35A3	3	43.26	1.10	E,B
HHD	DUMPS/UMPS	1	69.15	0.01	E
ннм	Mulefoot/LRP4	15	76.81	0.05	в
HHP	Polledness (dominant)/POLLED	1	2.57	0.88	_
HHR	Red coat color/MC1R (MSHR)	18	14.71	3.29	-

¹Timing of embryonic loss/calf death for homozygous animals: B = calf death at/shortly after birth, E = embryonic loss/abortion, W = calf death weeks/months after birth (Cole et al., 2016; Cole et al., 2018).

USDA^a

^aCole, 2019

- Large amount of research has been conducted on finding lethal haplotypes (VanRaden et al., 2011; Sahana et al., 2013; Hoff et al. 2017).
- Within livestock populations undergoing selection lethals mutations are effectively removed from the population, while sub-lethal mutations are difficult to remove.
- What about sub-lethal mutations (i.e. affected animal **doesn't die**, but instead has **reduced performance**)?

Use heuristics to "tag" unfavorable ROH genotype

	Genotype	
Animal	Window 8 tagged	Phenotype
1	121 202020202020202020202020202020202020	8.2
2	0002020202020202020202020202020202020 1112221211111201111	8.0
3	0002020202020202020202020202020202020202	7.9
4	121121212111111 202020202020202020202020	7.6
5	1211212121111111111020202020202020202012212121212121212111	8.2
6	121102020202020202020202020202020202020	8.5
7	121212120202020202020202020202020202020	7.5
8	121212121102020202020202020202020202020	8.1
9	0002020202020202020202020202020202020202	8.8
10	12112121211111111020202020202020201112212121212121212111	8.3
11	0002020202020202020202020202020202020202	7.5
11	22112222222202022020202020202222222020202220211212121222222	11.5
12	22111112222220202202020202022222202022220202222	12.1
NonROH	1211212121111111111212121212222222211122121	10.5

Use heuristics to "tag" unfavorable ROH genotype

	Genotype	
Animal	Window 11 tagged	Phenotype
1	121 <mark>202020202020202020202020202020202020</mark>	8.2
2	0002020202020202020202020202020202020 1112221211111201111	8.0
3	0002020202020202020202020202020202020202	7.9
4	121121212111111 202020202020202020202020	7.6
5	121121212111111111020202020202020202012212121212121212111	8.2
6	121102020202020202020202020202020202020	8.5
7	121212120202020202020202020202020202020	7.5
8	121212121102020202020202020202020202020	8.1
9	0002020202020202020202020202020202020202	8.8
10	121121212111111111020202020202020201112212121212121212111	8.3
11	0002020202020202020202020202020202020202	7.5
11	221122222222020202020202020202020202020	11.5
12	221111122222202022020202020202222222020222200121222221	12.1
NonROH	121121212111111111212121212222222211122121	10.5

Inbreeding Load Matrix (ILM)

- Summarize effects of unfavorable haplotypes identified.
- Across two individuals:

$$\sum_{l=0}^{l=Haplotypes} (\frac{1}{4} * (X_1X_1 + X_1X_2 + X_2X_1 + X_2X_2) * \beta_l \sum_{l=0}^{l=Haplotypes} (\frac{1}{4} * (X_1Y_1 + X_1Y_2 + X_2Y_1 + X_2Y_2) * \beta_l :$$

HaploFinder Inbreeding Load

HaploFinder Inbreeding Load

Research Article | Open Access | Published: 30 August 2021

Identification of unique ROH regions with unfavorable effects on production and fertility traits in Canadian Holsteins

Bayode O. Makanjuola , Christian Maltecca, Filippo Miglior, Gabriele Marras, Emhimad A. Abdalla, Flavio S. Schenkel & Christine F. Baes

<u>Genetics Selection Evolution</u> 53, Article number: 68 (2021) Cite this article

Trait	-10logp Pedigree	-10logp Genomic	-10logp Diag. ILM
Milk	4.95	18.06	27.45
Fat	4.67	9.96	16.56
Pro	2.18	13.47	21.43
PL	0.33	1.5	4.75
DPR	0.57	0.08	1.21
SCS	0.11	0.14	0.58

Inbreeding offset

• A mate allocation matrix (B; Pryce et al. 2012) constructed:

$$B_{ij} = \lambda_1 * EBV_{ij} - \lambda_2 * F_{ij} - \lambda_3 * ILM_{ij},$$

- Can be constructed based on lethal and unfavorable haplotypes/mutations.
- Penalize breeding value based on inbreeding metric and functional inbreeding.

	Dam1	Dam2	Dam3	Dam4	Dam5
Sire 1	B _{Sire 1, Dam 1}	B _{Sire 1, Dam 2}	B _{Sire 1, Dam 3}	B _{Sire 1, Dam 4}	B _{Sire 1, Dam 5}
Sire 2	B _{Sire 2, Dam 1}	B _{Sire 2, Dam 2}	B _{Sire 2, Dam 3}	B _{Sire 2, Dam 4}	B _{Sire 2, Dam 5}
Sire 3	B _{Sire 3, Dam 1}	B _{Sire 3, Dam 2}	B _{Sire 3, Dam 3}	B _{Sire 3, Dam 4}	B _{Sire 3, Dam 5}
Sire 4	B _{Sire 4, Dam 1}	B _{Sire 4, Dam 2}	B _{Sire 4, Dam 3}	B _{Sire 4, Dam 4}	B _{Sire 4, Dam 5}
Sire 5	B _{Sire 5, Dam 1}	B _{Sire 5, Dam 2}	B _{Sire 5, Dam 3}	B _{Sire 5, Dam 4}	B _{Sire 5, Dam 5}

Characterizing Age of Inbreeding

- HBD happens when individuals inherit copies of ancestral chromosome
- Copies are inherited through different patterns
- The length of HBD depend on the number of generations and the population structure
- Inbreeding can then be divided into different age classes and these related to the overall depression load based on their age⁸

HBD Characterizing the population through HBD

HBD Characterizing the population through HBD

HBD Characterizing the population through HBD

Trait	Pedigree Regression	Genomic Regression
Milk	-91.1	-108.2
Fat	-3.63	-3.58
Pro	-1.81	-2.86
PL	-0.56	-0.85
DPR	-0.12	-0.02
SCS	-0.08	~0

HBD	Trait	Regression
2-8 Gen		-138.1
18-128 Gen	Milk	-88.3
>128 Gen		-185.3
2-8 Gen		-4.44
18-128 Gen	Fat	-3.82
>128 Gen		-5.12
2-8 Gen		-3.38
18-128 Gen	Pro	-2.60
>128 Gen		-4.43
2-8 Gen		-0.83
18-128 Gen	PL	-0.32
>128 Gen		0.08
2-8 Gen		-0.14
18-128 Gen	DPR	-0.04
>128 Gen		0.02

Research article | Open Access | Published: 01 September 2020 Effect of recent and ancient inbreeding on production and fertility traits in Canadian Holsteins

Bayode O. Makanjuola 🖂, Christian Maltecca, Filippo Miglior, Flavio S. Schenkel & Christine F. Baes

 BMC Genomics
 21, Article number: 605 (2020)
 Cite this article

 2495
 Accesses
 16
 Citations
 7
 Altmetric
 Metrics

Research Article Open Access Published: 16 June 2021

Trends in genetic diversity and the effect of inbreeding in American Angus cattle under genomic selection

Emmanuel A. Lozada-Soto , Christian Maltecca, Duc Lu, Stephen Miller, John B. Cole & Francesco <u>Tiezzi</u>

 Genetics Selection Evolution
 53, Article number: 50 (2021)
 Cite this article

 2664
 Accesses
 3
 Citations
 6
 Altmetric
 Metrics

Near future

- Characterization annotation of haplotypes
- Refining HBD structure

Mid future

- Validation of haplotypes in larger populations (across breeds)
- Implement ILM for validated haplotypes

$$\begin{split} & \textit{EBV}_{c0} = \textit{EBV} - \lambda_0 \textit{F}_{\textit{P}} \\ & \textit{EBV}_{c1} = \textit{EBV} - \lambda_1 \textit{F}_{\textit{G}} \\ & \textit{EBV}_{c2} = \textit{EBV} - \lambda_1 \textit{F}_{\textit{G}_{hbd_1}} \dots - \lambda_n \textit{F}_{\textit{G}_{hbd_n}} \\ & \textit{EBV}_{c3} = \textit{EBV} - \lambda_1 \textit{F}_{\textit{G}_{hbd_1}} \dots - \lambda_n \textit{F}_{\textit{G}_{hbd_n}} - \lambda_{n+1} \textit{F}_{\textit{ILM}} \end{split}$$

It's Complicated

Managing Diversity (minus the logistics)

There's nothing left to select

Genetic Load

Genome wide homozygosity measures are bad indicators of genetic load

- We use them because we struggle to identify (sublethal) deleterious variants
- Genetic architecture is a direct function of the selection process
 - How much directional dominance there is in dairy cattle is still an open question

We often assume that purging is not happening or not fast enough

- Dairy populations are under strong indirect and direct selection for "functional fitness"
- Fitness it's hard to define and quantify on the field

Inferring genomic architecture of inbreeding from breeding populations is more complicated than for additive variation

- It is not economically feasible to conduct selection
 experiments in dairy
- Some of these questions cannot truly be answered retrospectively

- Increase focus on deep phenotyping
- Increase integration of functional annotation
- Increase numbers of genotyped individuals
- Refine analysis tools
- Integrating of model organism approaches
- Investigating the potential advanced technologies
- Data sharing

On the short-term homozygosity will remain an issue best managed trough logistic structuring of the breeding process

Johansen et al., 2010 Genome wide effect of long-term divergent selection DOI: 10.1371/journal.pgen.1001188

Generation

W G Hill ¹

Open Access Article

A Large-Scale Genome-Wide Association Study of **Epistasis Effects of Production Traits and Daughter Pregnancy Rate in U.S. Holstein Cattle**

by \bigcirc Dzianis Prakapenka ¹ \bigtriangledown , \bigcirc Zuoxiang Liang ¹ \bigtriangledown , \bigcirc Jicai Jiang ² \bigtriangledown , \bigcirc Li Ma ³ \bigtriangledown \bigcirc and \bigcirc Yang Da ^{1,*} \backsim

50.71

46.41

42.10

37.79 -

33,48

29.18 -

24.87 -

20.56 -

 $_{AAAS} imes$

(f) Daughter pregnancy rate

1.00

genic variance 0.75 0.50

9 additive

0.00

Ó

10

20

30 40 50

Generations

Method

> Genet Sel Evol. 2022 Mar 7;54(1):19. doi: 10.1186/s12711-022-00709-7.

The long-term effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture

Yvonne C J Wientjes ¹, Piter Bijma ², Mario P L Calus ², Bas J Zwaan ³, Zulma G Vitezica ⁴, Joost van den Heuvel³

1.00

g varian

nic

ð Additiv

8 0.50

0.25

0.00

20 30

Generations

40 50

10

30 40 50

Generations

RANDOM - MASS - PBLUP_OP - GBLUP_NoOP - GBLUP_OP

1.00

9

.0.7

Bo f

0.25

0.00

Ó 10 20

Ð

Additive genetic variance

Research article Open Access Published: 27 April 2018

Characterization of recombination features and the genetic basis in multiple cattle breeds

Botong Shen, Jicai Jiang, Eyal Seroussi, George E. Liu & Li Ma

BMC Genomics 19, Article number: 304 (2018) | Cite this article

Journal of Dairy Science Volume 102, Issue 6, June 2019, Pages 5279-5294

Research

Variance of gametic diversity and its application in selection programs

D.J.A. Santos $^{1,\,2}\,\,\stackrel{\scriptstyle o}{\sim}\,\,\stackrel{\scriptstyle \boxtimes}{\rightarrow}\,$ J.B. Cole 3 , T.J. Lawlor Jr. 4 , P.M. VanRaden 3 , H. Tonhati 2 , L. Ma $^1\,\stackrel{\scriptstyle o}{\sim}\,\,\stackrel{\scriptstyle \boxtimes}{\rightarrow}\,$

The conversion of variance and the evolutionary potential of restricted recombination

<u>M Neiman 🖂 & T A Linksvayer</u>

Heredity 96, 111–121 (2006) Cite this article

Genetic recombination is usually considered to facilitate adaptive evolution. However, recombination prevents the reliable cotransmission of interacting gene combinations and can disrupt complexes of coadapted genes. If interactions between genes have important fitness effects, restricted recombination may lead to evolutionary responses that are different from those predicted from a purely additive model and could even aid adaptation.

Future Direction

Removing Recessive Load

- Optimal contribution
- Minimization of progeny inbreeding
- Selection against lethal alleles
- Index selection including Mendelian sampling variance
- · Genomic selection including dominance

Acknowledgements

Christine Baes U of Guelph John Cole Urus Jennie Pryce La Trobe University Francesco Tiezzi University of Florence Paul VanRaden USDA AGIL Jicai Jiang NCSU