

Colostrum yield is heritable and genetically correlated with immunoglobulins concentration in Holstein cows

#2213054

A. Goi¹, M. De Marchi¹, M. Cassandro^{1,2}, R. Finocchiaro², M. Marusi², A. Costa³

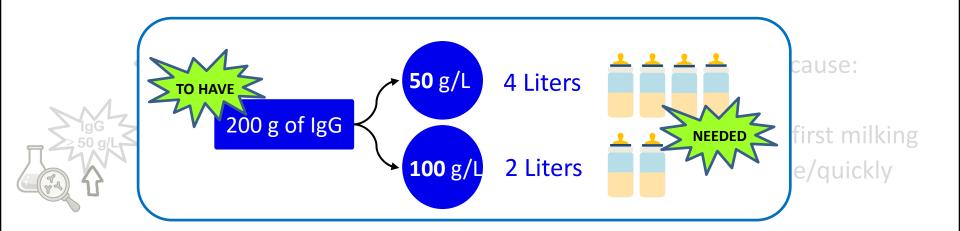
Università degli Studi di Padova


¹Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro (PD), Italy
²Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), Cremona (CR), Italy
³Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy

- Colostrum is the first secretion of the mammary gland after calving
- Provides newborn calves with nutrients and immunoglobulins, fundamental for their survival, health, growth and development

 Administration to newborn calves is of paramount importance for transfer of passive immunity

Its **quality** is conventionally based on the **immunoglobulins G** (IgG) concentration



At least 4 L of good quality colostrum should be consumed within 12 h from calving

• Ideally, an highly concentrated secretion is preferable, because:

- Dairy cows often fail to produce enough colostrum at first milking
- Sometimes the neonates refuse to consume 4 L in time/quickly

Colostrum: a way to improve calf health

mortality rate long-term effects

on performance

Genetic selection for calf health is still under investigation, with first attempts currently ongoing in Canada

(Lynch et al., 2023 https://doi.org/10.3168/jds.2023-23780)

To improve colostrum yield (CY) and colostrum quality (=IgG concentration)

- ❖ Intermediate optimum for CY
- ❖ high IgG

Is smart genetic selection for both traits meaningful? Feasible?

- Evaluate the IgG concentration in cows of different productivity level (CY)
- Estimate the heritability (h²) of CY and its genetic correlation with IgG

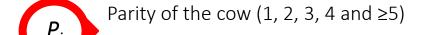
Materials and Methods

- 2,693 Holstein cows
- 60 farms in North-East Italy
- May 2022 March 2023
- Parity from 1 to 9

- Colostrum yield at 1st milking (≤ 6 h from calving)
- 120 mL of colostrum for NIRS prediction* of IgG (g/L)
- 1 obs/cow

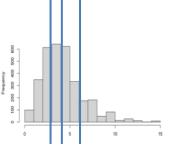
^{*}Franzoi et al. 2022 Food Chem. (R² external validation=0.83)

Materials and Methods



Aim 1. Evaluate the IgG concentration in cows of different productivity level (CY)

ASRemI°


Analysis of IgG concentration

$$y_{ijklm} = \mu + P_i + S_j + C_k + (P \times C)_{ik} + (P \times S)_{ij} + h_l + a_m + e_{ijklm}$$

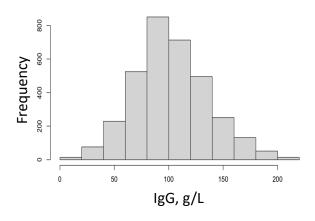
Class of CY defined by quartiles (≤ 3 , 3 -4, 4-6, > 6 L)

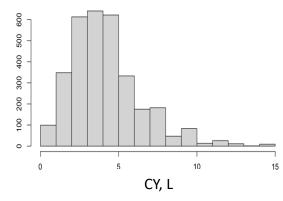
Materials and Methods

Aim 2. Estimate the heritability (h²) of CY and its genetic correlation with IgG

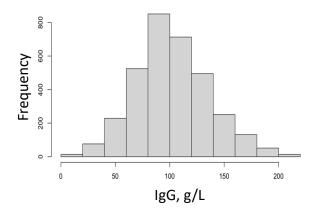
Heritability and genetic correlation

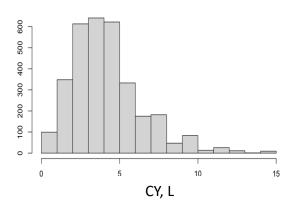
$$y_{ijklm} = \mu + P_i + S_j + S_j + (P \times S)_{ik} + (P \times S)_{ij} + h_l + a_m + e_{ijklm}$$

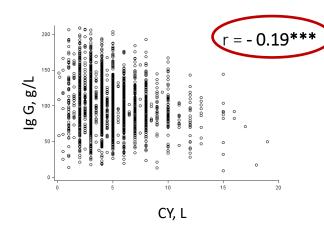

$$y_{ijkl} = \mu + P_i + S_j + (P \times S)_{ij} + h_k + a_l + e_{ijkl}$$


Pedigree info (19,699 individuals):

Trait	Mean	SD	Range	CV, %
IgG, g/L	102.16	33.62	2.07-209.96	32.90
CY, L	4.63	2.28	0.10-15.00	49.20







Trait	Mean	SD	Range	CV, %
IgG, g/L	102.16	33.62	2.07-209.96	32.90
CY, L	4.63	2.28	0.10-15.00	49.20

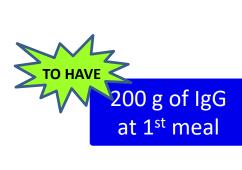
Pearson's correlation

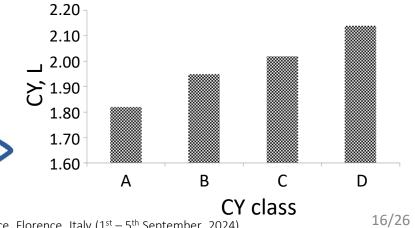
ANOVA IgG:

CY class	LSM IgG, g/L	SE
A (≤ 3 L)	110.02ª	2.31
B (3-4 L)	104.45 ^b	2.51
C (4-6 L)	99.18 ^c	2.51
D (> 6 L)	93.71 ^d	2.54

ANOVA IgG:

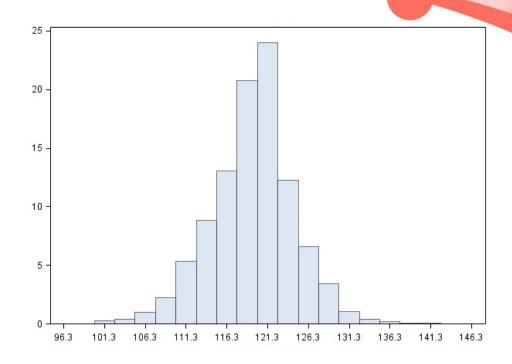
CY class	LSM IgG, g/L	SE
A (≤ 3 L)	110.02ª	2.31
B (3-4 L)	104.45 ^b	2.51
C (4-6 L)	99.18 ^c	2.51
D (> 6 L)	93.71 ^d	2.54



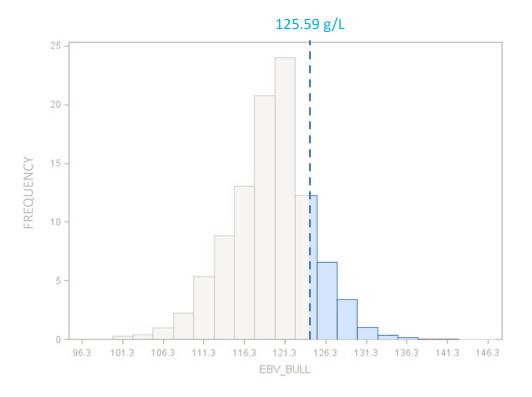

ANOVA
lgG:

CY class	LSM IgG, g/L	SE
A (≤ 3 L)	110.02ª	2.31
B (3-4 L)	104.45 ^b	2.51
C (4-6 L)	99.18 ^c	2.51
D (> 6 L)	93.71 ^d	2.54

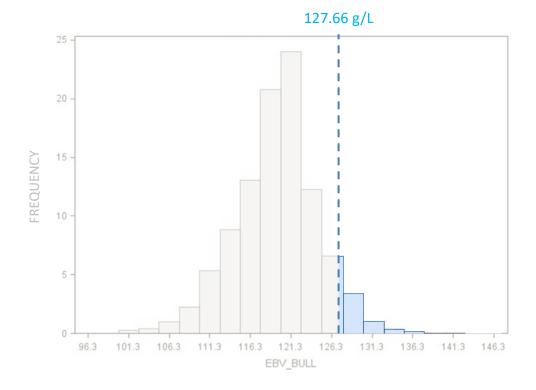
COLOSTRUM



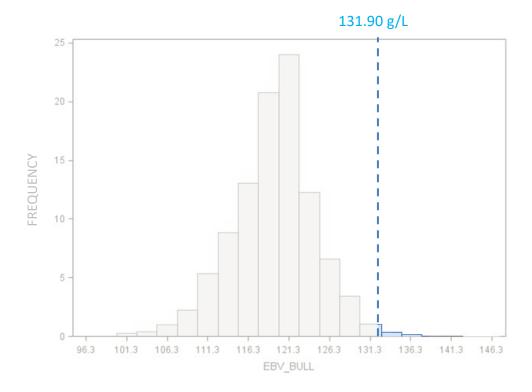
Trait	Heritability	r _a	r_p	
IgG , g/L	0.22 (0.05)	0.25 (0.22)	-0.26 (0.03)	
CY, L	0.07 (0.03)	-0.35 (0.23)		


Bulls ranking for IgG

Percentile		EBV (g/L)	
100%	Max	147.36	
99%		131.90	\bigcirc
75%	Q3	122.353	
50%	Median	119.861	
25%	Q1	116.495	
1%		106.07	(<u></u>)
0%	Min	95.93	_
			_



Best 10%



Best 5%

Best 1%

Retrospective investigation on performance of the offspring of the top 10% bulls

Top 10%	n daughters	Mean	SD	Min	Max
IgG , g/L	631	118.23	33.43	31.93	208.49
CY, L	607	4.62	2.37	0.10	15.00

Remaining ones	n daughters	Mean	SD	Min	Max
IgG , g/L	2044	97.05	31.34	9.20	208.59
CY, L	1952	4.69	2.27	0.12	15.00

Retrospective investigation on performance of the offspring of the top 10% bulls

Top 10%	n daughters	Mean	SD	Min
IgG, g/L	631	118.23	33.43	Observed
CY, L	607	4.62	2.37	difference =
				21.2 g/L of IgG
Remaining ones	n daughters	Mean	SD	ax
IgG, g/L	2044	97.05	31.34	9.20 2 8.59

4.69

2.27

15.00

1952

CY, L

Conclusions

- CY is variable and heritable in dairy cows
- Optimizing at the same time quality (IgG) and quantity (CY) of colostrum delivered by cows at the first milking is achievable through selective breeding
- A proper index should consider their antagonistic association to ensure a response in both traits in the right direction

EBV IgG Spearman corr. EBV CY Spearman corr. Production, functionality, type PFT 0.24* PFT -0.31**

0.30**

0.28**

0.38***

0.30**

0.42***

0.01 ns

0.28**

-0.01 ns

0.05 ns

0.05 ns

0.015 ns

0.16 ns

0.01 ns

IES

ICSPR

Milk

Kg fat

Kg pro

% fat

%pro

ICM

SCC

Fertility

Longevity

Calving ease

Feet & legs

-0.33**

-0.30**

-0.48***

-0.39***

-0.48***

-0.09 ns

-0.28**

-0.16 ns

-0.11 ns

-0.03 ns

-0.25*

-0.21*

0.15 ns

IES

ICSPR

Milk

Kg fat

Kg pro

% fat

%pro

ICM

SCC

Fertility

Longevity

Maternal calving ease

Feet & Legs

Official selection index

Economic and functional

Functional udder

Considerations and perspectives

- Calf health data are needed and collection is recommended for future development of an index
- Such calf health index should take into account also colostrum (dam side)
- Often colostrum of various dams is pooled, pasteurized and then administered to calves
- Non always a parallelism between mother colostrum and calf health (pooled colostrum)

Thank you for the attention

□ arianna.goi@studenti.unipd.it

Università DEGLI STUDI DI PADOVA

With the support of:

